An Interoperable Framework for Mining and Analysis of Space Science Data (F-MASS)

PI: Sara J. Graves
Project Lead: Rahul Ramachandran

Information Technology and Systems Center University of Alabama in Huntsville

<u>sgraves@itsc.uah.edu</u> <u>rramachandran@itsc.uah.edu</u>

Others Involved in the Project

- Wladislaw Lyatsky and Arjun Tan (Co-PI)
 Department of Physics, Alabama A&M
 University
- Glynn Germany
 Center for Space Plasma, Aeronomy, and
 Astrophysics Research, University of Alabama in
 Huntsville
- Xiang Li, Matt He, John Rushing and Amy Lin ITSC, University of Alabama in Huntsville

Project Objectives

- Extend the existing scientific data mining framework by providing additional data mining algorithms and customized user interfaces appropriate for the space science research domain
 - Provide a framework for mining to allow better data exploitation and use
- Utilize specific space science research scenarios as use case drivers for identifying additional techniques to be incorporated into the framework
 - Enable scientific discovery and analysis

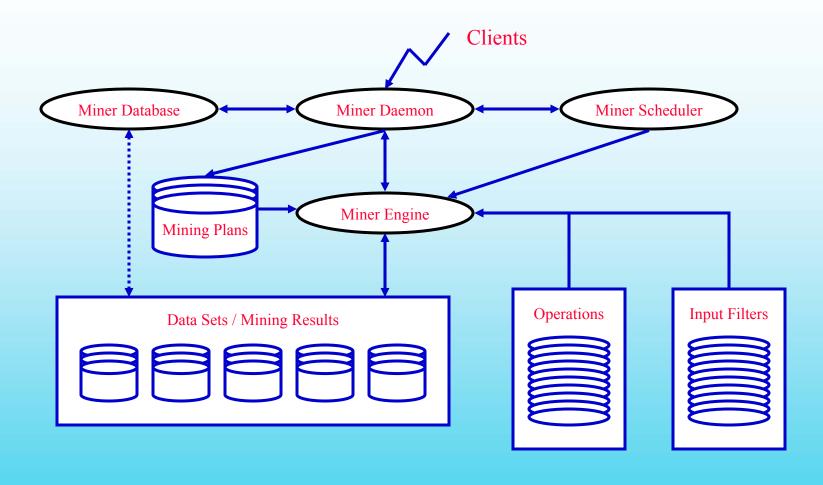
Presentation Outline

- Overview of the Mining Framework
- Applications
- New collaborations
- Ongoing work
- Publications

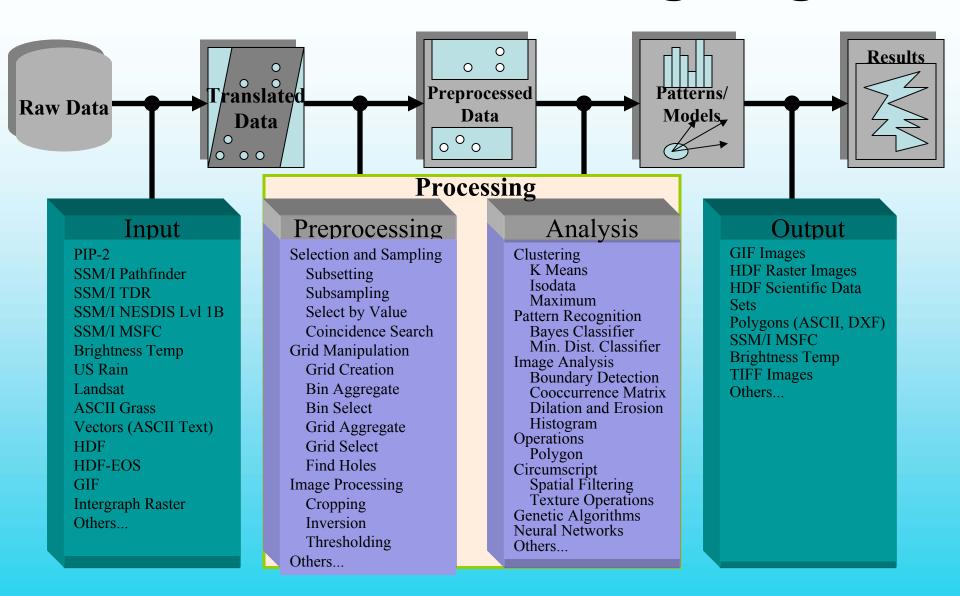
Overview of the ADaM* Mining Framework

*ADaM: Algorithm Development and Mining

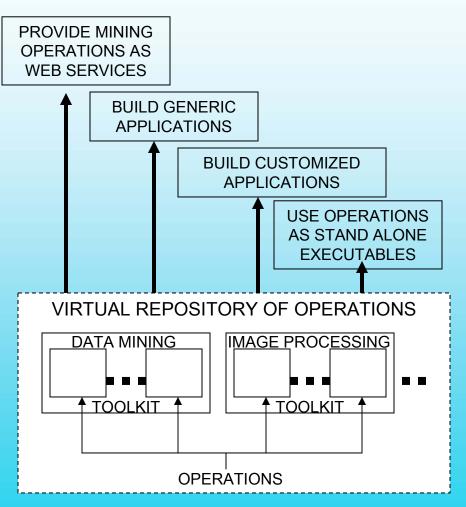
Previous ADaM Architecture



Previous ADaM Mining Engine



New Design: ADaM Toolkit



- Component based where each component is provided with a C++ application programming interface (API), an executable in support of scripting tools (e.g. Perl, Python, Tcl, Shell)
- ADaM components are lightweight and autonomous, and have been used successfully in a grid environment
- ADaM has several translation components that provide data level interoperability with other mining systems (such as WEKA and Orange), and point tools (such as libSVM and symLight)
- ADaM toolkit is available via the web

ADaM Components

Pattern Recognition

Classification Techniques:

Naïve Bayes Classifier

Backpropagation Neural Network

K Nearest Neighbor Classifier

Multi-Prototype Minimum Distance Classifier

Recursively Splitting Neural Network

Clustering Techniques:

Isodata

K-Means

Maximin

Feature Selection / Reduction Techniques:

Backward Elimination

Forward Selection

Principal Components

RELIEF (filter based feature selection)

Remove Attributes

Pattern Recognition Utilities:

Accuracy Measures

Range Filter

K-Fold Cross Validation

Vector Magnitude

Merge Patterns

Normalization

Sample

Subset

Statistics

Association Rules

Optimization Techniques

Genetic Algorithm

Hill Climbing

Simulated Annealing

Image Processing

Basic Image Operations

Arithmetic

Collage Crop

Image Diff

Equalize

Inverse

Quantize

Relative Level Quantize

Resample

Rotate

Statistics

Threshold

Segmentation / Edge and Shape Detection

Boundary Detection

Polygon Circumscription

Make Region

Mark Region

Filtering

Dilate and Erode

Energy

Median and Mode Filters

Pulse Coupled Neural Network

Spatial Filter

Texture Features

Association Rules

Fractal Dimension

Gabor Filter

GLCM (Gray Level Cooccurrence)

GLRL (Gray Level Run Length)

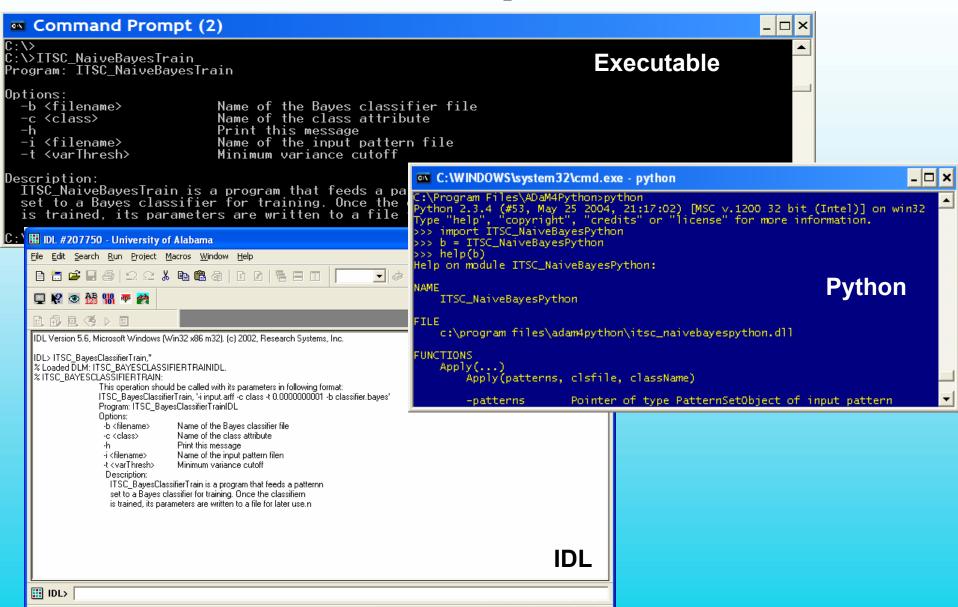
Markov Random Field

And More!

ADaM 4.0 Toolkit Features

- Ease of Use!
- Reusable Components
- Simple Internal Data Model
- Allow both loose and tight coupling with other applications/systems
- Flexible to allow ease of use in both batch and interactive mode
 - Python interface to mining components
 - IDL interface to the mining components

Examples



Ready

Applications in Space Science

Comparing Different Thresholding Algorithms for Segmenting Auroras

Background

- Spacecraft UV images observing auroral events contain two regions, an auroral oval and the background
- Under ideal circumstances, the histogram of these images has two distinct modes and a threshold value can be determined to separate the two regions
- Different factors such as the date, time of the day, and satellite
 position all affect the luminosity gradient of the UV image making the
 two regions overlap and thereby making the threshold selection a
 non trivial problem

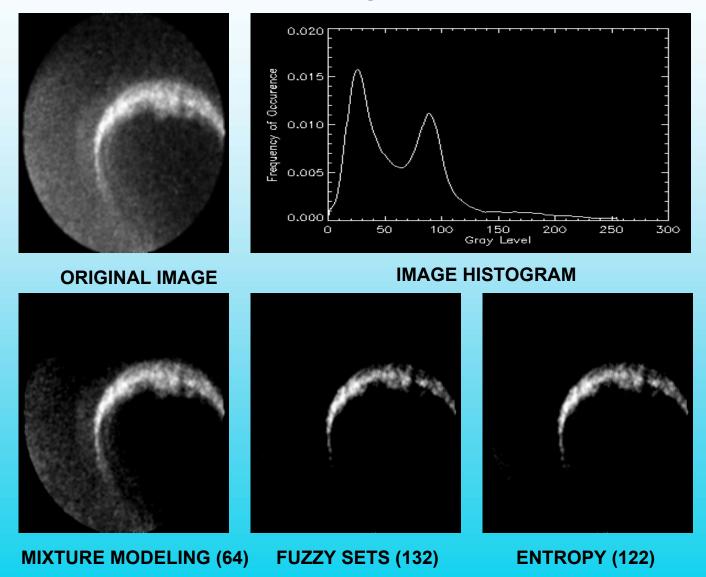
Objective of this study

Compare different thresholding (global and adaptive) techniques and algorithms for segmenting auroral events in Polar UV images

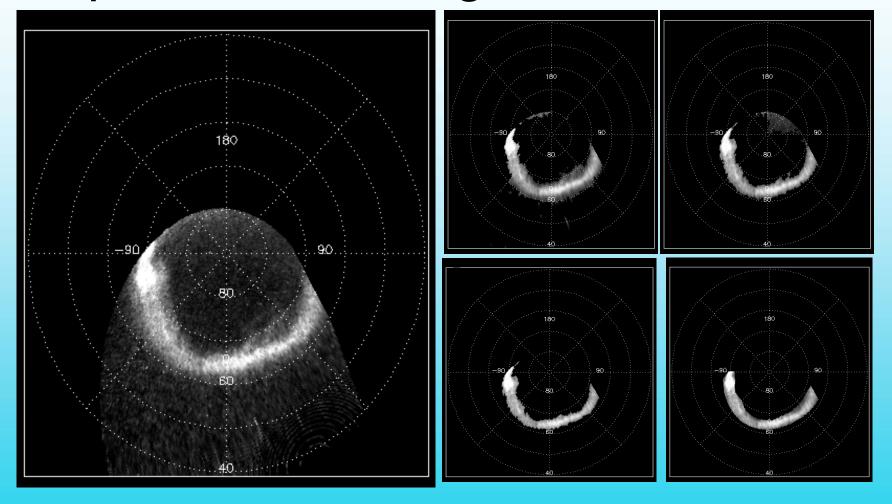
Data Used

 130 images from UVI observations on September 14, 1997, covering the time period from 8:30 UT and 11:27 UT

Global Thresholding Result: Sept, 14, 1997 image, 08:41:53 UTC



Adaptive Thresholding Results: Sept 14, 1997 image 09:05:48 UTC



A. Original Image B. Mixture Modeling C. Entropy D. Fuzzy Sets E. Gradient

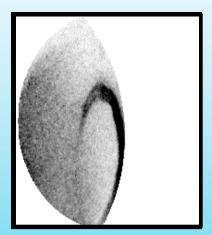
Dayglow Removal from FUV Auroral Images

 Uses principles from Satellite Image Classification: Multi-date Image Normalization using Pseudo-invariant features (PIFs)

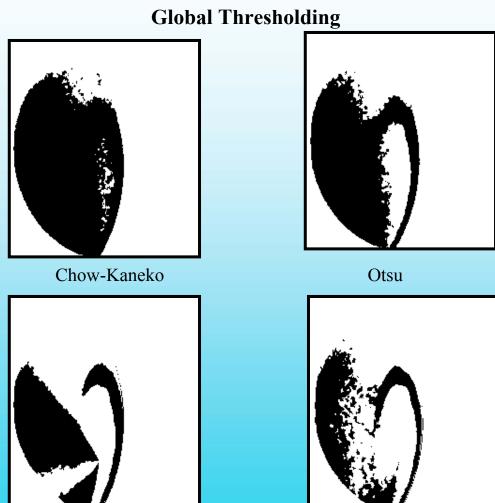
Methodology

- Identify dayglow pixels, i.e., pixels whose intensities are contributed from dayglow emission but not from auroral emission.
- Use the dayglow pixels to model the dayglow emission intensity as the function of the solar zenith angle (SZA) and the viewing zenith angle(VZA).
- Remove dayglow emission with estimated dayglow intensity using SZA and VZA.

Two thresholding techniques, global thresholding and adaptive thresholding, are applied for aurora detection using two thresholding algorithms: (1) Chow-Kaneko (1972), (2) Otsu (1979) BEFORE day glow removal



Original UVI LBHL image 12:20:55 UT, 03/10/2000

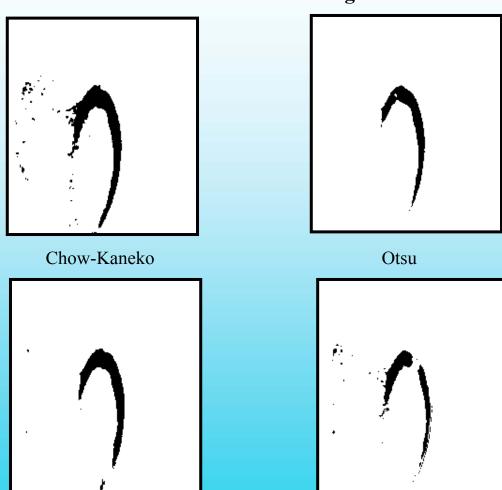


Adaptive Thresholding

Two thresholding techniques, global thresholding and adaptive thresholding, are applied for aurora detection using two thresholding algorithms: (1) Chow-Kaneko (1972), (2) Otsu (1979) AFTER day glow removal

Global Thresholding

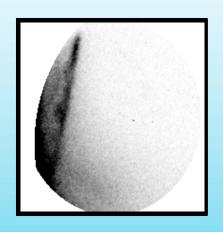
UVI LBHL image with dayglow removal 12:20:55 UT, 03/10/2000



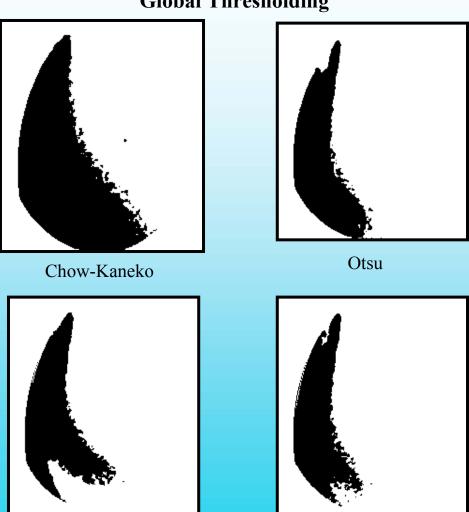
Adaptive Thresholding

Two thresholding techniques, global thresholding and adaptive thresholding, are applied for aurora detection using two thresholding algorithms: (1) Chow-Kaneko (1972), (2) Otsu (1979) BEFORE day glow removal

Global Thresholding



Original UVI LBHL image 03:21:08 UT, 07/20/2000

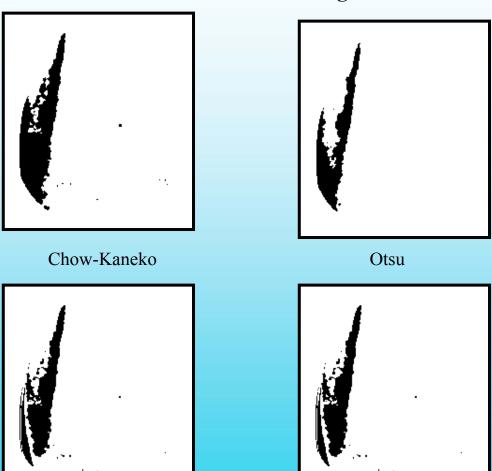


Adaptive Thresholding

Two thresholding techniques, global thresholding and adaptive thresholding, are applied for aurora detection using two thresholding algorithms: (1) Chow-Kaneko (1972), (2) Otsu (1979) AFTER day glow removal

Global Thresholding

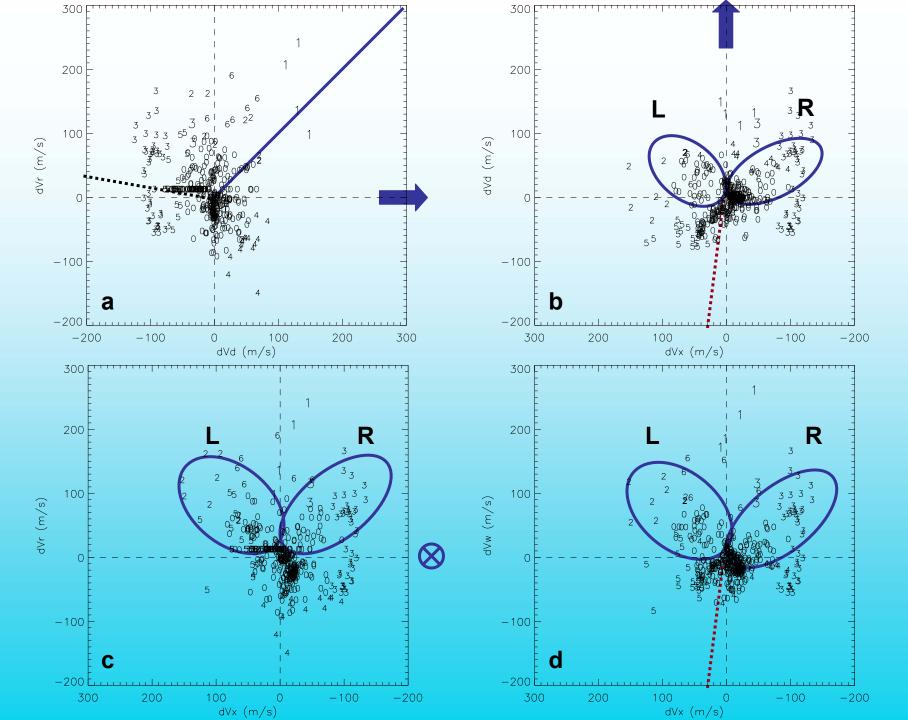
UVI LBHL image with dayglow removal 03:21:08 UT, 07/20/2000



Adaptive Thresholding

Evidence of Satellite Fragmentation by Orbital Debris

- Since 1961, the number of satellite fragmentations in space had escalated to a cumulative total of 170 by 2001.
- These fragmentations have created hazardous orbital debris and pushed the number by trackable objects in orbit to over 8,900 by 2001.
- Most of the fragmentations were explosions of rocket bodies due to ignition of residual fuel; many were due to deliberate actions taken by the former Soviet Union; at least one was the result of a U. S. Anti-satellite (ASAT) experiment; and few were suspected to be associated with the Soviet ASAT program of the past.
- Our analysis finds compelling circumstantial evidence that satellite fragmentation by orbital debris may have already taken place.
- Clustering algorithm was used as part of Exploratory Data Analysis and was critical in identifying the high velocity particles (outliers)!!



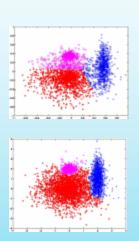
New Collaborations

- Jerry Fishman (MSFC) and William S.
 Paciesas (UAH)
 - Investigating the use of clustering algorithms on the Gamma Ray Burst Catalog

Ongoing Work

- Adding improved versions of the K-Means Clustering Algorithm to the toolkit
 - Version 1: Based on Boosting

From: Frossyniotis, D., A. Likas, and A. Stafylopatis, 2004: A clustering method based on boosting. Pattern Recognition Letters, 25, 641-654.



 Version 2: Using Particle Swarm Optimization for better center locations

Merwe, D. v. d. and A. Engelbrecht, 2003: Data Clustering using Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, Canberra, Australia, 215-220.

Publications

- He, M., R. Ramachandran, X. Li, S. Graves, W. Lystsky, A. Tan, and G. Germany, 2002: An Interoperable Framework for Mining and Analysis of Space Science Data (F-MASS). *Eos. Trans. AGU*.
- Li, X., R. Ramachandran, M. He, S. Movva, J. Rushing, and S. Graves, 2004: Comparing Different Thresholding Algorithms for Segmenting Auroras. Space Science Computation and IT Applications, International Conference on Information Technology, Las Vegas, NV.
- Li, X., R. Ramachandran, S. Movva, S. Graves, G. Germany, W. Lyatsky, and A. Tan, 2004: Dayglow removal from FUV Auroral Images. *IEEE International Geoscience and Remote Sensing Symposium*, Anchorage, Alaska, IEEE.
- Rushing, J., R. Ramachandran, U. Nair, S. Graves, R. Welch, and A. Lin, Accepted 2004: ADaM: A Data Mining Toolkit for Scientists and Engineers. Computers & Geosciences.
- Tan, A. and R. Ramachandran, 2004: Evidence of Satellite Fragmentation by Orbital Debris. 76th Annual National Conference and Technical Career & Opportunity Fair, National Technical Association, Tuskegee, AL.
- Tan, A. and R. Ramachandran, Submitted 2004: Evidence of Satellite Fragmentation by Orbital Debris. *Journal of the Astronautical Science*.